Population-based variation in cardiomyopathy genes.
نویسندگان
چکیده
BACKGROUND Hypertrophic cardiomyopathy and dilated cardiomyopathy arise from mutations in genes encoding sarcomere proteins including MYH7, MYBPC3, and TTN. Genetic diagnosis of cardiomyopathy relies on complete sequencing of the gene coding regions, and most pathogenic variation is rare. The 1000 Genomes Project is an ongoing consortium designed to deliver whole genome sequence information from an ethnically diverse population and, therefore, is a rich source to determine both common and rare genetic variants. METHODS AND RESULTS We queried the 1000 Genomes Project database of 1092 individuals for exonic variants within 3 sarcomere genes MHY7, MYBPC3, and TTN. We focused our analysis on protein-altering variation, including nonsynonymous single nucleotide polymorphisms, insertion/deletion polymorphisms, or splice site altering variants. We identified known and predicted pathogenic variation in MYBPC3 and MYH7 at a higher frequency than what would be expected based on the known prevalence of cardiomyopathy. We also found substantial variation, including protein-disrupting sequences, in TTN. CONCLUSIONS Cardiomyopathy is a genetically heterogeneous disorder caused by mutations in multiple genes. The frequency of predicted pathogenic protein-altering variation in cardiomyopathy genes suggests that many of these variants may be insufficient to cause disease on their own but may modify phenotype in a genetically susceptible host. This is suggested by the high prevalence of TTN insertion/deletions in the 1000 Genomes Project cohort. Given the possibility of additional genetic variants that modify the phenotype of a primary driver mutation, broad-based genetic testing should be employed.
منابع مشابه
Cardiac structural and sarcomere genes associated with cardiomyopathy exhibit marked intolerance of genetic variation.
BACKGROUND The clinical significance of variants in genes associated with inherited cardiomyopathies can be difficult to determine because of uncertainty regarding population genetic variation and a surprising amount of tolerance of the genome even to loss-of-function variants. We hypothesized that genes associated with cardiomyopathy might be particularly resistant to the accumulation of genet...
متن کاملGenetic Profiling for Risk Reduction in Human Cardiovascular Disease
Cardiovascular disease is a major health concern affecting over 80,000,000 people in the U.S. alone. Heart failure, cardiomyopathy, heart rhythm disorders, atherosclerosis and aneurysm formation have significant heritable contribution. Supported by familial aggregation and twin studies, these cardiovascular diseases are influenced by genetic variation. Family-based linkage studies and populatio...
متن کاملApical Hypertrophic Cardiomyopathy in a Case with Chest Pain and Family History of Sudden Cardiac Death: A Case Report
Hypertrophic cardiomyopathy (HCM) is the most common genetic cardiovascular disease, which is caused by a multitude of mutations in genes encoding proteins of the cardiac sarcomere (1). Apical hypertrophic cardiomyopathy (AHCM) is an uncommon type of HCM. The sudden cardiac death is less likely to occur in the patients inflicted with AHCM (2). Herein, we presented the case of a 29-year-old man ...
متن کاملGenetic and Phenotypic Variation for Flowering Time Genes in Barley (Hordeum vulgare)
Objective: Flowering Time (FT) in cereals controlled by genes that had a main factor on plant development. Methods: Genetic and phenotypic diversity of four flowering time genes (FT2, FT3, FT4, Ppd-H1) in 19 genotypes of cultivated and wild barley was evaluated and a total of 107 alleles were amplified. Genotypes based on days to flowering time and molecular data were grouped into earl...
متن کاملGenetic and Phenotypic Variation for Flowering Time Genes in Barley (Hordeum vulgare)
Objective: Flowering Time (FT) in cereals controlled by genes that had a main factor on plant development. Methods: Genetic and phenotypic diversity of four flowering time genes (FT2, FT3, FT4, Ppd-H1) in 19 genotypes of cultivated and wild barley was evaluated and a total of 107 alleles were amplified. Genotypes based on days to flowering time and molecular data were grouped into earl...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Circulation. Cardiovascular genetics
دوره 5 4 شماره
صفحات -
تاریخ انتشار 2012